sig
type t = Lacaml__D.mat
type unop =
?m:int ->
?n:int ->
?br:int ->
?bc:int ->
?b:Lacaml__D.mat ->
?ar:int -> ?ac:int -> Lacaml__D.mat -> Lacaml__D.mat
type binop =
?m:int ->
?n:int ->
?cr:int ->
?cc:int ->
?c:Lacaml__D.mat ->
?ar:int ->
?ac:int ->
Lacaml__D.mat -> ?br:int -> ?bc:int -> Lacaml__D.mat -> Lacaml__D.mat
val hilbert : int -> Lacaml__D.mat
val hankel : int -> Lacaml__D.mat
val pascal : int -> Lacaml__D.mat
val rosser : unit -> Lacaml__D.mat
val toeplitz : Lacaml__D.vec -> Lacaml__D.mat
val vandermonde : Lacaml__D.vec -> Lacaml__D.mat
val wilkinson : int -> Lacaml__D.mat
val random :
?rnd_state:Stdlib.Random.State.t ->
?from:float -> ?range:float -> int -> int -> Lacaml__D.mat
val abs : Lacaml__D.Mat.unop
val signum : Lacaml__D.Mat.unop
val sqr : Lacaml__D.Mat.unop
val sqrt : Lacaml__D.Mat.unop
val cbrt : Lacaml__D.Mat.unop
val exp : Lacaml__D.Mat.unop
val exp2 : Lacaml__D.Mat.unop
val expm1 : Lacaml__D.Mat.unop
val log : Lacaml__D.Mat.unop
val log10 : Lacaml__D.Mat.unop
val log2 : Lacaml__D.Mat.unop
val log1p : Lacaml__D.Mat.unop
val sin : Lacaml__D.Mat.unop
val cos : Lacaml__D.Mat.unop
val tan : Lacaml__D.Mat.unop
val asin : Lacaml__D.Mat.unop
val acos : Lacaml__D.Mat.unop
val atan : Lacaml__D.Mat.unop
val sinh : Lacaml__D.Mat.unop
val cosh : Lacaml__D.Mat.unop
val tanh : Lacaml__D.Mat.unop
val asinh : Lacaml__D.Mat.unop
val acosh : Lacaml__D.Mat.unop
val atanh : Lacaml__D.Mat.unop
val floor : Lacaml__D.Mat.unop
val ceil : Lacaml__D.Mat.unop
val round : Lacaml__D.Mat.unop
val trunc : Lacaml__D.Mat.unop
val erf : Lacaml__D.Mat.unop
val erfc : Lacaml__D.Mat.unop
val logistic : Lacaml__D.Mat.unop
val relu : Lacaml__D.Mat.unop
val softplus : Lacaml__D.Mat.unop
val softsign : Lacaml__D.Mat.unop
val pow : Lacaml__D.Mat.binop
val atan2 : Lacaml__D.Mat.binop
val hypot : Lacaml__D.Mat.binop
val min2 : Lacaml__D.Mat.binop
val max2 : Lacaml__D.Mat.binop
val cpab :
?m:int ->
?n:int ->
?cr:int ->
?cc:int ->
Lacaml__D.mat ->
?ar:int ->
?ac:int -> Lacaml__D.mat -> ?br:int -> ?bc:int -> Lacaml__D.mat -> unit
val cmab :
?m:int ->
?n:int ->
?cr:int ->
?cc:int ->
Lacaml__D.mat ->
?ar:int ->
?ac:int -> Lacaml__D.mat -> ?br:int -> ?bc:int -> Lacaml__D.mat -> unit
val log_sum_exp :
?m:int -> ?n:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> float
val create : int -> int -> Lacaml__D.mat
val make : int -> int -> float -> Lacaml__D.mat
val make0 : int -> int -> Lacaml__D.mat
val of_array : float array array -> Lacaml__D.mat
val to_array : Lacaml__D.mat -> float array array
val of_list : float list list -> Lacaml__D.mat
val to_list : Lacaml__D.mat -> float list list
val of_col_vecs : Lacaml__D.vec array -> Lacaml__D.mat
val to_col_vecs : Lacaml__D.mat -> Lacaml__D.vec array
val of_col_vecs_list : Lacaml__D.vec list -> Lacaml__D.mat
val to_col_vecs_list : Lacaml__D.mat -> Lacaml__D.vec list
val as_vec : Lacaml__D.mat -> Lacaml__D.vec
val init_rows : int -> int -> (int -> int -> float) -> Lacaml__D.mat
val init_cols : int -> int -> (int -> int -> float) -> Lacaml__D.mat
val create_mvec : int -> Lacaml__D.mat
val make_mvec : int -> float -> Lacaml__D.mat
val mvec_of_array : float array -> Lacaml__D.mat
val mvec_to_array : Lacaml__D.mat -> float array
val from_col_vec : Lacaml__D.vec -> Lacaml__D.mat
val from_row_vec : Lacaml__D.vec -> Lacaml__D.mat
val empty : Lacaml__D.mat
val identity : int -> Lacaml__D.mat
val of_diag :
?n:int ->
?br:int ->
?bc:int ->
?b:Lacaml__D.mat ->
?ofsx:int -> ?incx:int -> Lacaml__D.vec -> Lacaml__D.mat
val dim1 : Lacaml__D.mat -> int
val dim2 : Lacaml__D.mat -> int
val has_zero_dim : Lacaml__D.mat -> bool
val col : Lacaml__D.mat -> int -> Lacaml__D.vec
val copy_row : ?vec:Lacaml__D.vec -> Lacaml__D.mat -> int -> Lacaml__D.vec
val swap :
?uplo:[ `L | `U ] ->
?m:int ->
?n:int ->
?ar:int ->
?ac:int -> Lacaml__D.mat -> ?br:int -> ?bc:int -> Lacaml__D.mat -> unit
val transpose_copy : Lacaml__D.Mat.unop
val detri :
?up:bool -> ?n:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> unit
val packed :
?up:bool ->
?n:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> Lacaml__D.vec
val unpacked : ?up:bool -> ?n:int -> Lacaml__D.vec -> Lacaml__D.mat
val fill :
?m:int -> ?n:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> float -> unit
val sum : ?m:int -> ?n:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> float
val add_const : float -> Lacaml__D.Mat.unop
val neg : Lacaml__D.Mat.unop
val reci : Lacaml__D.Mat.unop
val copy_diag :
?n:int ->
?ofsy:int ->
?incy:int ->
?y:Lacaml__D.vec -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> Lacaml__D.vec
val trace : Lacaml__D.mat -> float
val scal :
?m:int -> ?n:int -> float -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> unit
val scal_cols :
?m:int ->
?n:int ->
?ar:int -> ?ac:int -> Lacaml__D.mat -> ?ofs:int -> Lacaml__D.vec -> unit
val scal_rows :
?m:int ->
?n:int ->
?ofs:int -> Lacaml__D.vec -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> unit
val syrk_trace :
?n:int -> ?k:int -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> float
val syrk_diag :
?n:int ->
?k:int ->
?beta:float ->
?ofsy:int ->
?y:Lacaml__D.vec ->
?trans:Lacaml__common.trans2 ->
?alpha:float -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> Lacaml__D.vec
val add : Lacaml__D.Mat.binop
val sub : Lacaml__D.Mat.binop
val mul : Lacaml__D.Mat.binop
val div : Lacaml__D.Mat.binop
val axpy :
?alpha:float ->
?m:int ->
?n:int ->
?xr:int ->
?xc:int -> Lacaml__D.mat -> ?yr:int -> ?yc:int -> Lacaml__D.mat -> unit
val gemm_diag :
?n:int ->
?k:int ->
?beta:float ->
?ofsy:int ->
?y:Lacaml__D.vec ->
?transa:Lacaml__D.trans3 ->
?alpha:float ->
?ar:int ->
?ac:int ->
Lacaml__D.mat ->
?transb:Lacaml__D.trans3 ->
?br:int -> ?bc:int -> Lacaml__D.mat -> Lacaml__D.vec
val gemm_trace :
?n:int ->
?k:int ->
?transa:Lacaml__D.trans3 ->
?ar:int ->
?ac:int ->
Lacaml__D.mat ->
?transb:Lacaml__D.trans3 -> ?br:int -> ?bc:int -> Lacaml__D.mat -> float
val symm2_trace :
?n:int ->
?upa:bool ->
?ar:int ->
?ac:int ->
Lacaml__D.mat ->
?upb:bool -> ?br:int -> ?bc:int -> Lacaml__D.mat -> float
val ssqr_diff :
?m:int ->
?n:int ->
?ar:int ->
?ac:int -> Lacaml__D.mat -> ?br:int -> ?bc:int -> Lacaml__D.mat -> float
val map :
(float -> float) ->
?m:int ->
?n:int ->
?br:int ->
?bc:int ->
?b:Lacaml__D.mat -> ?ar:int -> ?ac:int -> Lacaml__D.mat -> Lacaml__D.mat
val fold_cols :
('a -> Lacaml__D.vec -> 'a) ->
?n:int -> ?ac:int -> 'a -> Lacaml__D.mat -> 'a
end